Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
data_mining:logistic_regression [2014/07/20 15:15] – [Regularization] phreazer | data_mining:logistic_regression [2018/05/10 15:48] (current) – phreazer | ||
---|---|---|---|
Line 56: | Line 56: | ||
Z.B. aus 3-Klassenproblem 3 binäre Probleme erzeugen. $h_\theta(x)^{(i)} = P(y=i|x; | Z.B. aus 3-Klassenproblem 3 binäre Probleme erzeugen. $h_\theta(x)^{(i)} = P(y=i|x; | ||
- | Dann wähle Klasse i, die $max_i h_\theta^{(i)}(x)$ | + | Dann wähle Klasse i, die $\max_i h_\theta^{(i)}(x)$ |
===== Adressing Overfitting ===== | ===== Adressing Overfitting ===== | ||
Line 89: | Line 89: | ||
0 & \dots & 0 & 1 | 0 & \dots & 0 & 1 | ||
\end{bmatrix})^{-1} X^T y$$ | \end{bmatrix})^{-1} X^T y$$ | ||
+ | |||
+ | === Gradient descent (Logistic Regression) === | ||
+ | |||
+ | Unterscheide $\theta_0$ und $\theta_j$! | ||
+ | |||
+ | Für $\theta_j$: $\dots + \frac{\lambda}{m} \theta_j$ |