Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
time_series:fft [2014/08/11 19:21] – phreazer | time_series:fft [2014/08/11 22:02] (current) – phreazer | ||
---|---|---|---|
Line 2: | Line 2: | ||
$\hat{a}_k = \sum^{N-1}_{j=0} e^{-2\pi * i * \frac{jk}{N}} * \hat{a}_j$ | $\hat{a}_k = \sum^{N-1}_{j=0} e^{-2\pi * i * \frac{jk}{N}} * \hat{a}_j$ | ||
- | |||
- | $e^-i\dots$ | ||
Komplexe Exponentialfunktion: | Komplexe Exponentialfunktion: | ||
$e^{-x} = \cos x - i \sin x$ | $e^{-x} = \cos x - i \sin x$ | ||
- | $X[k] = \sum^{N-1}_{j=0} X[n] \cos(\omega_k * n) - i \sum^{N-1}_{j=0} X[n] \sin(\omega_k * j)$ | + | $X[k] = \sum^{N-1}_{n=0} X[n] \cos(\omega_k * n) - i \sum^{N-1}_{n=0} X[n] \sin(\omega_k * n)$ |
$\omega_k= \frac{2 \pi k}{N}$ | $\omega_k= \frac{2 \pi k}{N}$ | ||
Line 16: | Line 14: | ||
Maß für Anwesendheit von Cosinus (Reelle Zahlen) / Sinus Wellen (Imaginäre Zahlen) | Maß für Anwesendheit von Cosinus (Reelle Zahlen) / Sinus Wellen (Imaginäre Zahlen) | ||
+ | k => Anzahl der Zyklen. | ||
- | + | Positive Zahlen => | |
- | + | ||
- | + |