Draft ====== Problem ====== p(B) gegeben R, F, G, C Kaufwahrscheinlichkeit P(B) Bedingte Wahrscheinlichkeit gesucht P(B|R,F,G,C) Probleme: * 2^x bedingte Wahrscheinlichkeiten zu berechnen * unzureichende Historie, da manche Fälle nicht auftreten ====== Bayes rule ====== **Datensatz:** ^ R ^ B | | y | y | | n | n | | y | n | * n: Einträge * R=y für r Fälle * B=y für k Fälle * R=y und B=y für i Fälle * $p(B|R) = i/r$ * $p(R) = r/n$ * $p(R und B) = i/n = (i/r) * (r/n)$ * $p(B,R) = p(B|R) p(R)$ Bayes Rule: $P(B,R) = P(B|R) P(R) = P(R|B) P(B)$ Bayes Theorem: $P(B|R) = \frac{P(B,R)}{P(R)} = \frac{P(R|B)P(B)}{P(R)}$ A-Priori-Wkeit: $P(B)$ Likelihood: $P(R|B)$ A-Posterior-Wkeit: $P(B|R)$ ===== Beispiel ===== Question 1: If a person has malaria (mp), there is 90% chance that the blood test for malarial parasite comes up positive (tp); however, 1% of the time the test gives a false positive (tp and mn). Also, there is a 1% chance of getting malaria in general (mp). Unfortunately, you happen to test positive. What is the chance of your having malaria? Geg.: * $P(tp | mp) = 0,9$ * $P(tp | mn) = 0,01$ * $P(mp) = 0,01$ Gesucht: $P(mp|tp) = \frac{P(tp|mp) * P(mp)}{P(tp)} = \frac{0,9 * 0,01}{0,9*0,01+0,01*(1-0,01)} = 0,476$ Question 2: Now suppose your doctor had employed a far superior, more expensive test, one with only a .1% chance of a false positive. (Other parameters are the same - 90% chance of a true positive, 1% chance of malaria in general.) What is the chance that you have malaria if you test positive with this improved procedure? * $P(tp | mp) = 0,9$ * $P(tp | mn) = 0,001$ * $P(mp) = 0,01$ Gesucht: $P(mp|tp) = \frac{P(tp|mp) * P(mp)}{P(tp)} = \frac{0,9 * 0,01}{0,9*0,01+0,001*(1-0,01)} = 0,901$ ====== Unabhängigkeit ====== Angenommen B und R sind voneinander unabhängig. P(R) = r/n, P(C)= c/n P(R|C) = i/c, P(C|R) = i/r R und B sind voneinander unabhängig wenn und nur wenn i/c = r/n; i/r = c/n P(R|B) = P(R); P(B|R) = P(B) ====== Naive Bayes ====== Naiv wegen Annahme: R und C sind unabhängig gegeben B $$ P(B|R,C) * P(R,C) = P(R,C|B) * P(B)\\ = P(R|C,B) * P(C|B) * P(B) (Bayes Rule)\\ = P(R|C) * P(C|B) * P(B) (Unabhängigkeit) $$ Verhältnis berechnen: $$ \frac{p(r|B=y) * p(c|B=y) * p(B=y)}{p(r|B=n) * p(c|B=n) * p(B=n)} $$ B=y, wenn $>\alpha$ (z.B. 1), sonst B=n ====== Naive Bayes für N features ====== $$ L = \prod_{i=1}^N \frac{p(x_i|B=y)}{p(x_i|B=n)} * \frac{p(B=y)}{p(B=n)} $$ B=y, wenn $>\alpha$ (z.B. 1), sonst B=n log-likelihood => Anstelle von Multiplikation zu Addition um Rundungsfehler zu vermeiden ====== Beispielhafte Sentiment Analysis ====== p(+),p(-), p(like|+), p(enjoy|+), p(hate|+), ... P(hate|-), p(enjoy|-), p(lot|-), ... Im Text: like, simple, lot $$ L = \frac{p(like|+)p(lot|+)[1-p(hate|+)][1-p(waste|+)]p(simple|+)}{p(like|-)p(lot|-)[1-p(hate|-)][1-p(waste|-)]p(simple|-)} * \frac{p(+)}{p(-)} $$