====== Calculus ====== "calculus of infinitesimals", study of continous change ===== Differential calculus ===== study of rates ath which quantities change. ==== Derivative ==== Example of a straigth line $y=mx+b$, $m=\Delta y / \Delta x$ "Differentialquotient": $m = \lim_{x_1 -> x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ $f'(x) = \frac{d}{dx} f(x) = \lim_{h -> 0} \frac{f(x + h) - f(x)}{h}$ $f''(x) = \frac{d^2}{dx^2} f(x)$ Geometrically, derivative of f at point x=a is slope of tangent line. ==== Differential equations ==== Relation between collection of functions and their derivatives. Ordinary differential equation: Differential operator $f'(x)=f(x)^2 * x$ $\frac{dy}{dx} = y^2 * x$ $dy = y^2 * x {dx}$ $\frac{1}{y^2} dy = x {dx}$ $\int \frac{1}{y^2} dy = \int x {dx}$ $-y^{-1} + c_1 = 1/2 x^2 + c_2$ $-(1/y) = 1/2 x^2 + c_2 - c_1$ $(c_2 - c_1 = c)$ $y = \frac{-1}{(1/2 x^2 + c)}$ (y is a function not value, obviously) === Types === $y' + f(x) y = g(x)$ first order, linear, "homogen" if g(x) = 0, else "inhomogen" ("Störfunktion") Solve inhomogen eqs: $y'' + a_1 y' + a_0 * y = g(x)$ $y(x) = y_a(x) + y_p(x)$ General solution of homogen DE $y_a(x)$ (set to 0, solve with characteristic polynom) "Particular" solution of inhomogen DE $y_p(x)$ v=6jypcZkrvLM Mit Störfkt, charakteristisches Polynom, lösen.