programming_languages:r:parameter_description

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
programming_languages:r:parameter_description [2017/03/19 19:23] – [train method] phreazerprogramming_languages:r:parameter_description [2017/03/26 20:26] (current) – [dtw] phreazer
Line 4: Line 4:
  
 Issues: Issues:
-  * Documenting the possible entries is not easy, because a single model description already contains a lot of information. When many models must be described in help, the help page of the function becomes to large (in particular the parameter description part).+  * Documenting the possible entries is not easy, because a single model description already contains a lot of information. When many models must be described in help, the help page of the function becomes too large (in particular the parameter description part).
   * The model description itself should be structured.   * The model description itself should be structured.
  
Line 22: Line 22:
  
  
-preProcess: a string vector that defines a pre-processing of the+  preProcess: a string vector that defines a pre-processing of the
           predictor data. Current possibilities are "BoxCox",           predictor data. Current possibilities are "BoxCox",
           "YeoJohnson", "expoTrans", "center", "scale", "range",           "YeoJohnson", "expoTrans", "center", "scale", "range",
Line 30: Line 30:
           adjust them. Pre-processing code is only designed to work           adjust them. Pre-processing code is only designed to work
           when ‘x’ is a simple matrix or data frame.           when ‘x’ is a simple matrix or data frame.
 +
 +
 +getModelInfo shows infos about models and packages that are accessible via ‘train’
 +
 +  Usage:
 +     modelLookup(model = NULL)
 +     
 +     checkInstall(pkg)
 +     
 +     getModelInfo(model = NULL, regex = TRUE, ...)
 +     
 +     ‘modelLookup’ is good for getting information related to the
 +     tuning parameters for a model. ‘getModelInfo’ will return all the
 +     functions and metadata associated with a model. Both of these
 +     functions will only search within the models bundled in this
 +     package.
 +
 +  Value:
 +   ‘modelLookup’ produces a data frame with columns
 +   
 +   model: a character string for the model code
 +   
 +   parameter : the tuning parameter name
 +   
 +   label : a tuning parameter label (used in plots)
 +   
 +   forReg : a logical; can the model be used for regression?
 +   
 +   forClass : a logical; can the model be used for classification?
 +   
 +   probModel : a logical; does the model produce class probabilities?
 +     ‘getModelInfo’ returns a list containing one or more lists of the
 +     standard model information.
 +   
 +Returned info from getModelInfo is a rather cryptic list.
  
 preProcess is a function which has it's own different method types. The methods are explained in the details section of the perProcess help page. preProcess is a function which has it's own different method types. The methods are explained in the details section of the perProcess help page.
 +
 trainControl is also a function, where different possible values for methods are listed, but not explained. Only hints which methods should be used under which circumstances. trainControl is also a function, where different possible values for methods are listed, but not explained. Only hints which methods should be used under which circumstances.
 +
 +===== proxy =====
 +
 +  # summary of available distance measures
 +  summary(pr_DB)
 +  # particular info about one distance measure
 +  pr_DB$get_entry("Jaccard")
 +  
 +===== dtw =====
 +  # directly print stepPattern (it's a class)
 +  print(symmetric2)
 +  
 +===== arules =====
 +  object of class APparameter or named list.
  
  • programming_languages/r/parameter_description.1489947823.txt.gz
  • Last modified: 2017/03/19 19:23
  • by phreazer