Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
data_mining:pca [2014/08/23 23:49] – [Problemformulierung] phreazer | data_mining:pca [2014/08/30 15:07] (current) – [Problemformulierung] phreazer | ||
---|---|---|---|
Line 3: | Line 3: | ||
===== Problemformulierung ===== | ===== Problemformulierung ===== | ||
- | $x \in R^2$ | + | $x \in \mathbb{R}^2$ |
Finden einer Projektion mit minimalem Projektionsfehler. | Finden einer Projektion mit minimalem Projektionsfehler. | ||
Line 9: | Line 9: | ||
Feature Scaleing erforderlich. | Feature Scaleing erforderlich. | ||
- | Für 2 Dimensionen: | + | Für 2 Dimensionen: |
Für k Dimensionen: | Für k Dimensionen: | ||
Line 16: | Line 16: | ||
Berechnung der Kovarianzmatrix: | Berechnung der Kovarianzmatrix: | ||
- | $\Sigma$ = \frac{1}{m} \sum^n_{i=1} x^{(i)} x^{(i)}^T$ | + | $\Sigma = \frac{1}{m} \sum_{i=1}^n x^{(i)} |
- | Berechnung der Eigenvektoren der Matrix $\sigma$ | + | Berechnung der Eigenvektoren der Matrix $\sigma$: |
+ | |||
+ | svd-Funktion: | ||
+ | |||
+ | $U_{\text{reduce}}$ : k-Spalten der U-Matrix ($n \times n$) | ||
+ | |||
+ | $z = U_{\text{reduce}}^T x$ | ||
+ | |||
+ | ===== Parameterwahl (k) ===== | ||
+ | |||
+ | 99% der Varianz bleibt erhalten. | ||
+ | |||
+ | $$ | ||
+ | \frac{\frac{1}{m} \sum_{i=1}^m || x^{(i)} - x_{\text{approx}}^{(i)} ||^2}{\frac{1}{m} \sum_{i=1}^m || x^{(i)}||^2} \leq 0.01 | ||
+ | $$ | ||
+ | |||
+ | [U,S,V] mit S als diagonale Matrix. | ||
+ | |||
+ | Für ein k, kann $1-\frac{\sum_{i=1}^k S_{ii}}{\sum_{i=1}^n S_{ii}} \leq 0.01$. | ||
+ | |||
+ | ===== Decompression ===== | ||
+ | $x_\text{approx} = U_\text{reduce} z$ |